If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+8y-9=0
a = 10; b = 8; c = -9;
Δ = b2-4ac
Δ = 82-4·10·(-9)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{106}}{2*10}=\frac{-8-2\sqrt{106}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{106}}{2*10}=\frac{-8+2\sqrt{106}}{20} $
| 6y−14=24 | | 3.333x=(2+x*x)/2 | | x+13x+10x=-54+6 | | 186÷p=62 | | A=6x−35 | | 62+p=186 | | 62p=186 | | 1.5d+10.25=5+3.25 | | 25•n=2•25 | | 25n=2•25 | | X|10=x|11-12 | | x=1/3x+18x | | 4x+10=100+2x | | x-1/3x=18 | | X2+x–182=0 | | n=(225)/25 | | 3u-41=1 | | 8=2x+4 | | 2x15=3 | | 4x+6+x=6x-10 | | 18x=45+3x^2 | | 5(5c-3)=3(3c-5) | | 74a+28=42 | | Y=500000x0,5x | | 9y=-6y-45 | | 11f+22=44 | | 4y-+12=12 | | 6x+4=9x-9 | | -4x+7=28 | | 7x+5x=36 | | x=1/3x+18 | | T(x)=19-xx=-3 |